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The eigenvalue spectrum of a large symmetric random matrix 

S F Edwards?$ and Raymund C Jones§ 
t Science Research Council, State House, High Holborn, London WClR 4TA, UK 
5 Department of Mathematical Physics, University of Birmingham, Birmingham B15 2lT, 
UK 

Received 21 May 1976 

Abstract. A new and straightforward method is presented for calculating the eigenvalue 
spectrum of a large symmetric square matrix each of whose upper triangular elements is 
described by a Gaussian probability density function with the same mean and variance. 
Using the n + 0 method, we derive the semicircular eigenvalue spectrum when the mean of 
each element is zero and show that there is a critical finite mean value above which a single 
eigenvalue splits off from the semicircular continuum of eigenvalues. 

1. Introduction 

A recent model of the thermodynamics of a ‘spin glass’ proposed by Sherrington and 
Kirkpatrick (1975) is similar to the Kac model of ferromagnetism (see e.g. Stanley 
1971) in which each spin is allowed to interact with every other with an interaction 
strength which is a Gaussian random variable with non-zero mean. Two papers since 
that time have emphasized the equivalence between this approach and a study of the 
averaged eigenvalue spectrum of a large symmetric random matrix in which each 
element is a Gaussian random variable (Thouless er a1 1976, Kosterlitz ef a1 1976). 

The averaged eigenvalue spectrum of a large N X N Hermitian matrix each of whose 
elements has a Gaussian probability density function with mean zero and fixed variance 
seems first to have been given by Wigner (unpublished-see, however, Bronk 1964) 
and is known as the semicircular law. A published derivation of this law by Mehta 
(1967) is difficult to follow and the answer quoted is confusing in both the width of the 
distribution and its normalization. 

In this short paper we present a simple derivation of this semicircular law valid as 
N+m, and use the n + O  trick exploited by Edwards (1970, 1971) and Edwards and 
Anderson (1975), in which one writes 

In Q 2 we set up the formalism necessary for calculating the eigenvalue spectrum and 
illustrate the method by calculating the spectrum of a matrix each of whose elements is 
the same and constant. 

In Q 3 we use this formalism to calculate the (semicircular) averaged eigenvalue 
spectrum of a real symmetric N X N matrix each of whose elements has zero mean and 
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finite variance. Finally in 0 4 we calculate the coupled spectrum of a random matrix 
each of whose elements has finite mean and we point out certain similarities between 
this and certain problems in solid state physics involving localized perturbations. The 
analysis is trivially extensible to Hermitian matrices. 

2. The technique 

Consider a real symmetric N x N matrix M with eigenvalues MA. This will have an 
eigenvalue spectrum 

v ( ~ )  =N-' 1 S ( A  -M*)  
A 

where v ( A )  is normalized to unity. 
If A is given a small negative imaginary part -ie, then we see that 

v ( A )  = (TN)-' Im(A -ie -MA)-' .  
Now 

det(1A -M)=n ( A  -MA). 
A 

Hence 
1 a 

NT ah 
v(A)= -  Im - In det(l(A -ie) -M) 

and using the representation of the logarithm given by (1.1) we obtain 

-2 a 1 
NT ah n - r ~ n  

vfh) =- Im - lim - [(det-'/'(lA -M))" - 13. 

(2.3) 

(2.4) 

(We shall not explicitly display the small imaginary part of A, but leave this understood.) 
The determinant of a symmetric matrix may be represented by the multiple Fresnel 

integral 

and the imaginary part of A ensures convergence. We now substitute (2.5) into (2.4), 
assume that the latter holds for integral values of n and may be continued to n = 0. Thus 
we obtain our basic result 

(2.6) 
The integration is now over the Nn variables xg and the limit n -* 0 is taken first. 

We give first a simple illustrative example of the use of (2.6) when each matrix 
element M j  has the constant value Mo/N and we choose MO to be of order unity. Using 
the auxiliary field identity 
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we can rewrite the integral in (2.6) as 

The integrals over the x4 are easily performed by completing the square and we find 

(2.9) 

which gives 

Substituting this back into (2.6) and using the identity (1.1) we obtain 

Differentiating with respect to A and using Im A-' = d ( A ) ,  we obtain 

which is of course the correct spectrum of the degenerate matrix with N - 1 eigenvalues 
zero and one with value MO. 

3. 'Ibe semicircular law 

We consider a real symmetric N X N matrix M (with Mij = Mji) and allow each matrix 
element to fluctuate about a zero mean. The probability density function of the element 
Mij we choose as the Gaussian 

p ( ~ ~ ~ )  = [ e x p ( - ~ ~ / 2 a ~ ) ] / ( 2 ~ a ~ ) ' / ~ .  (3.1) 

For convenience we define J by a2 = J 2 / N  and J will be of order unity. 

equation (2.6) for v(A; {Mij})  over all configurations of the Mij given by (3.1). Thus 
The averaged density of eigenvalues p(A)  is obtained by ensemble averaging 

p ( ~ )  = J' V ( A  ; {Mij}) n p ( M j )  d ~ j -  (3.2) 

Carrying out the Gaussian integrations we find in a straightforward manner that 

Since we shall ultimately want the leading-order terms in N, and the terms linear in n (as 
n + 0) in the exponent of (3.3) we must examine carefully the order of magnitude of the 
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second two terms in the exponential of this equation. The second term is 

and this may be written as 

(3.4) 
ij 

The first term of (3.4) is of order Nn, whilst the second has a zero mean but its square is 
of order n. The third term in the exponential of (3.3) is only of order n2 and hence we 
need only retain the terms in a = p from (3.4). Thus 

-2 a eiW/4 Nn 

p ( A )  =-Im- NT a A  n - o n  lim ’[[( (;;iTi> j-, n dxiexp[ -iA i N i  (c x?)))^ - 11 

for large N. Again we use an auxiliary field s, to parametrize the second exponential as 

(3.6) 
The integral in (3 .3 ,  which we denote by J 2 ,  then becomes 

The integrals over the {xi} are straightforward Fresnel integralst and yield 

where 
A ’s2 
4 J  g ( s ) = 7 + 1 1 n [ i ( l + s ) ] .  (3.9) 

It should be noted that the small imaginary part of A defines the position of the branch 
point to be in the upper half-plane at s = -1. We may then cut the complex s plane by a 
line running from - 1 to -CO lying above the real axis and the contour of integration in 
(3.7) will be well defined. Since we require an expression for the eigenvalue spectrum 
valid as N + 03 we shall ultimately only retain terms in (3.8) which are of order eN and 
the integral can then be evaluated by saddle-point integration. The saddle points of 
(3.9) occur when g’(s) = 0 and for IA I < 25 are easily seen to lie at the conjugate points 

whilst for c\ I > 23 we have real saddle points at 
4J2 1/2 

s * = ’[ - 1 * ( 1 - 7) ] . 
2 

(3.10) 

(3.11) 

t An alternative approach is to use polar coordinates in the space of the x ,  when by steepest descent p is a 
multiple of Im R’. 
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We consider first the case IA(<2J. In order that the conditions for saddle-point 
integration apply, a contour must be chosen along which Re g(s) is minimum at the 
saddle point. It may be verified that if the contour of integration is deformed 
downwards to follow the line s = x - i[(4J2/A ’) - 1]’/’, Re g ( s )  has a global minimum at 

that Re g(s) has maxima at the points so’ and a minimum at s = -f. Thus if we choose the 
contour to pass through si, it cannot be deformed to pass through so’ also since it would 
cross regions in which the integrand is larger than at the saddle point and the conditions 
for using saddle-point integration to obtain the asymptotic behaviour of (3.8) would not 
be obtained. For / A  I < 2 J  we use the contour shown in figure 1. 

x = -r corresponding to the saddle point s,. However along the line Re s = -4, we find 

We thus find that 

(3.12) 

where 4-  is the direction of crossing the saddle point and is given by I,-= 
-:tan-’{ - 1[(4J2/A ’) - l]’”[-’}. Since g”(s0) is of order unity we need only retain the 
exponential in (3.12). Substituting (3.12), (3.10), and (3.8) into (3.5) and making use of 
(1.1) immediately gives 

We now use (3.10) for so, then a simple differentiation yields 

1 
21rJ’ ~ ( A ) ~ p ~ ( A ) ~ - ( 4 J 2 - A ’ ) ’ ’ ’ ,  (A/<2J. 

(3.13) 

(3.14) 

This is the semicircular law for the density of eigenvalues of a large random symmetric 
matrix. The result differs from that given by Mehta (1967, p 240) the edges of whose 
bands appear at A = d 2 .  However, it is easily verified that (3.14) is correctly 
normalized to unity and correctly gives a second moment of a random symmetric matrix 
in agreement with a first-principles calculation. 
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For (A I > 2J, g(sJ is real and hence p(A)  = 0. 
It has been pointed out (Bronk 1964, Mehta 1967) that if the matrix is large but 

finite, the spectrum will have an exponential tail of states with a finite number of 
eigenvalues concentrated in a region 0(N-’I6) beyond 25. 

4. Tbe sped” when each element has a finite mean 

We now consider a large symmetric random matrix each of whose elements fluctuates 
about a fixed mean Mo/N with a probability density function 

(4.1) 

Again we define J2 = Nu2, where J is a number of order unity. We proceed as before by 
using (3.2) and (4.1) to calculate the averaged eigenvalue spectrum. The Gaussian 
integrals over the matrix elements are easily calculated, and after retaining the 
dominant terms in N and n in the exponent we find that 

We denote the integral in (4.2) by J3,  and it may be parametrized using the auxiliary 
field identities (2.7) and (3.7). J3 then becomes 

AN ds dqndxfexp( - iA( l+s )x  (x?) ’ )  
i 

-A 2~ iNq2 
xexp -q 1 x g  exp 7 s exp - ( i ) ( 4 3  ’) (4MO)‘ (4.3) 

The Gaussian integration over the {x;}  is performed straightforwardly by completing 
the square and we obtain 

e x p ( T l n  A) I ds dq exp(-Ng(s)) 

(4.4) 

We now perform the remaining Gaussian integral over q and obtain the result 
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Now away from regions in which s = s1 the square root singularity in the denominator of 
(4.5) can be neglected because of the N in the exponential. The leading-order 
asymptotic contribution to the integral is then again given by the saddle point si of g(s)  
and we obtain the semicircular law po(A) for the eigenvalue density once more 
(alternatively one easily sees that ifs is not close to sl, and the functionspre-multiplying 
the exponential are re-exponentiated themselves, the resulting function has a saddle 
point only shifted by 0(1/N) from si). 

Close to s1 more care is required and the arguments we use are close to those used in 
the spherical model of magnetism (Berlin and Kac 1958). A Taylor expansion of g(s)  
about s1 gives 

where the important quantity, A,, is defined by 

(4.8) 

Thus when A = A,, g(s) has a turning point at s = sl: for MO> J the turning point is a 
minimum whilst for MO < J it is a maximum. The former then leads to a local maximum 
in the integral whose contribution to the integrand for this isolated value A = A, must be 
included. The case MO< J leads to a minimum of the integrand which is of no 
importance. It should be noticed that the two cases MoS J correspond to A, S 2J, i.e. 
we only include the contribution of s1 when A, lies outside the semicircular continuum 
of eigenvalues. In this latter case the integral (4.5) is evaluated straightforwardly by 
retaining the first two terms of the Taylor expansion of g(s)  and using the substitution 
s -sl = iu2 to obtain a straightforward Gaussian integral. The result is 

2MO 1'2 NI2 (-;N ) 
J 3 = F ( 7 )  tr exp -1nA exp(-Ng(sl))exp[-iln(Am-A)]. 

Now 

- A 2  MO 1nA InMo itr 
4 J ( A  ) 2 2 4 

g ( s 1 ) = 7  --1 +----- 

(4.9) 

(4.10) 

thus 

J 3 = 7  (7) 2Mo 1/2 ~"~exp($ )  exp($lnMo) e x p [ T  - A ~ N  ( 7 - 1 )  M~ 2 -$ln(A,-A)]. 

(4.11) 

This is now substituted back into (4.2) whence, using (l.l), we find that for Mo>J the 
contribution to the eigenvalue spectrum is 

(4.12) 

with no corresponding contribution for MO< J. 
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Thus when each element of a large symmetric random matrix has the same mean, 
the eigenvalue spectrum is 

(4.13) 
lMol< J. 

This is the result we wished to establish. 
As was pointed out in a recent paper (Kosterlitz et a1 1976) this calculation is 

analogous to the extensively studied problem in solid state physics of determining the 
eigenvalue spectrum of a system which contains a strongly coupled localized perturba- 
tion (see e.g. Izyumov 1965 for a review). It is well known that for certain values of the 
coupling constants of the system, a state may be split outside the continuum of 
wave-like states and contribute a delta function, outside the band, to the eigenvalue 
spectrum. The wavefunction of such a state is highly localized. This case is analogous 
to our limit MO > J. For different values of the coupling constants this state will have an 
energy lying inside that of the lost band with which a weak resonance is associated. This 
corresponds to MO < J. 

5. summary 

We have considered a large random symmetric matrix the upper triangular elements of 
which are independent Gaussian random variables with mean Mo/N and variance 
J 2 / N ;  our results are true in the limit N +  0. We have used the n + 0 method to evaluate 
the eigenvalue density and find 
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